
J. Fluid Mech. (1997), �ol. 351, pp. 119–138. Printed in the United Kingdom

# 1997 Cambridge University Press

119

The generation of internal waves by vibrating
elliptic cylinders. Part 2. Approximate viscous

solution
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An approximate theory is given for the generation of internal gravity waves in a viscous
Boussinesq fluid by the rectilinear vibrations of an elliptic cylinder. A parameter λ
which is proportional to the square of the ratio of the thickness of the oscillatory
boundary layer that surrounds the cylinder to a typical dimension of its cross-section
is introduced. When λ' 1 (or equivalently when the Reynolds number R( 1), the
viscous boundary condition at the surface of the cylinder may to first order in λ be
replaced by the inviscid one. A viscous solution is proposed for the case λ' 1 in which
the Fourier representation of the stream function found in Part 1 (Hurley 1997) is
modified by including in the integrands a factor to account for viscous dissipation. In
the limit λU 0 the proposed solution becomes the inviscid one at each point in the flow
field.

For ease of presentation the case of a circular cylinder of radius a is considered first
and we take a to be the typical dimension of its cross-section in the definition of λ
above. The accuracy of the proposed approximate solution is investigated both
analytically and numerically and it is concluded that it is accurate throughout the flow
field if λ is sufficiently small, except in a small region near where the characteristics
touch the cylinder where viscous effects dominate.

Computations indicate that the velocity on the centreline on a typical beam of waves,
at a distance s along the beam from the centre of the cylinder, agrees, within about 1%,
with the (constant) inviscid values provided λs}a is less than about 10−$. This result is
interpreted as indicating that those viscous effects which originate from the
characteristics that touch the cylinder (places where the inviscid velocity is singular)
reach the centreline of the beam when λs}a is about 10−$. For larger values of s, viscous
effects are significant throughout the beam and the velocity profile of the beam changes
until it attains, within about 1% when λs}a is about 2, the value given by the similarity
solution obtained by Thomas & Stevenson (1972). For larger values of λs}a, their
similarity solution applies.

In an important paper Makarov et al. (1990) give an approximate solution for the
circular cylinder that is very similar to ours. However, it does not reduce to the inviscid
one when the viscosity is taken to be zero.

Finally it is shown that our results for a circular cylinder apply, after small
modifications, to all elliptical cylinders.

1. Introduction

The inviscid theory described in Part 1, Hurley (1997), has two features that limit its
applicability to a real fluid of small viscosity. First, the fluid velocities have inverse



120 D. G. Hurley and G. Keady

square-root singularities at all points of the characteristics that touch the vibrating
cylinder, so that the kinetic energy of the fluid per unit length of characteristic is
infinite. Also, the fluid velocities do not decay with increasing distance from the
cylinder.

In the present paper we investigate how these two defects are alleviated if the fluid
is assumed to be viscous while remaining with a linearized treatment. The basic
equations are given in §2. In §3 we propose an approximate solution to the viscous
flow, for the case when the Reynolds number R, defined in §2.1, is large. Specifically,
the Fourier decompositions of the stream function of the inviscid solution, obtained in
Part 1, are modified by including in the integrands factors to account for viscous
dissipation. The proposed approximate solution applies to all elliptic cylinders but for
ease of presentation it is described in §3 for the case of a circular cylinder. Section 4
gives extensive numerical results and in §5 our results are compared with both
theoretical and experimental ones obtained by other investigations. Finally in §6 it is
pointed out that the main properties of the flow for a circular cylinder also hold for all
elliptic cylinders.

2. Basic equations

The problem is the same as that considered in Part 1, except that the stratified fluid
of constant Brunt–Va$ isa$ la$ frequency N surrounding the elliptical cylinder is now
supposed to be viscous of kinematic viscosity ν. As in Part 1, the ellipse has semi-axes
a and b, the former being inclined at an angle θ to the horizontal. We introduce
Cartesian axes, the x-axis being horizontal and the y-axis vertically up, and the origin
of the coordinate system is at the centre of the cylinder. We suppose that the velocity
of each point of the surface of the cylinder is (U,V )exp(®iωt) where t is the time, and
ω the angular frequency. The fluid motions may be described in terms of a stream
function ψ(x, y)exp(®iωt) such that the velocity (u, �) is

u¯®
¥ψ
¥y

e−iωt, �¯
¥ψ
¥x

e−iωt, (2.1)

and ψ satisfies

η#
¥#ψ
¥x#

®
¥#ψ
¥y#


iν

ω
~%ψ¯ 0, (2.2)

where
η#¯N #}ω#®1. (2.3)

In addition, the velocities must vanish as (x, y) tends to infinity. The boundary
condition on the cylinder is discussed in §2.1 below.

We introduce the coordinates

σ
+
¯x sin(µ)®y cos(µ), s

+
¯x cos(µ)y sin(µ), (2.4)

where 0!µ!π}2 and
0! η¯ cot(µ). (2.5)

In terms of them, (2.2) is

¥#ψ
¥σ

+
¥s

+

cot(2µ)
¥#ψ
¥s#

+


iν

2ωη 0
¥#ψ
¥σ%

+

2
¥%ψ

¥σ#
+
¥s#

+


¥%ψ
¥s%

+

1¯ 0. (2.6)

We also introduce the coordinates

σ
−
¯x sin(µ)y cos(µ), s

−
¯®x cos(µ)y sin(µ). (2.7)



Generation of internal wa�es by �ibrating elliptic cylinders. Part 2 121

(a) y

x
µ

s+

σ+

(b) y

x
µ

s–

σ–

F 1. Notation. (a) Oσ
+
s
+

axes, (b) Oσ
−
s
−

axes.

In terms of these, (2.2) is

¥#ψ
¥σ

−
¥s

−

®cot(2µ)
¥#ψ
¥s#

−

®
iν

2ωη 0
¥%ψ
¥σ%

−

2
¥%ψ

¥σ#
−
¥s#

−


¥%ψ
¥s%

−

1¯ 0. (2.8)

Figure 1 gives the directions of the Oσ
+
s
+

and the Oσ
−
s
−

axes.
We now follow Thomas & Stevenson (1972) in introducing their ‘boundary-layer

approximation’ by assuming that, in (2.6), derivatives with respect to σ
+

are much
larger than those with respect to s

+
. With this assumption, the equation is approximated

by

¥#ψ
¥σ

+
¥s

+


iν

2ωη 0
¥%ψ
¥σ%

+

1¯ 0. (2.9)

Similarly, (2.8) is approximated by

¥#ψ
¥σ

−
¥s

−

®
iν

2ωη 0
¥%ψ
¥σ%

−

1¯ 0. (2.10)

2.1. The boundary condition on the cylinder

The vibrating cylinder will be surrounded by an oscillatory boundary layer whose
thickness is order δ, where

δ¯ (ν}ω)"/#, (2.11)

see Rosenhead (1963, p. 383) and Batchelor (1967, §5.13, p. 354).
We define

λ¯ ν}(2c#ωη) (2.12)

¯ 1}(2ηR), (2.13)

where c is a typical dimension of the ellipse and

R¯ c#ω}ν (2.14)
is the Reynolds number.

Equations (2.11) and (2.12) show that an alternative expression for λ is

λ¯
1

2η 0
δ

c1
#

. (2.15)

We suppose that λ' 1 or equivalently by (2.13) that R( 1. Then to first order in λ
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(Rosenhead 1963) the viscous no-slip boundary condition at the surface of the ellipse
may be replaced by the inviscid one which is

ψ¯Vx®Uy. (2.16)
We also suppose that

U}(ωc)' 1 and V}(ωc)' 1, (2.17)

because these must be satisfied for the present analysis, which is based on the ‘acoustic
limit ’, to be valid (Bell 1975).

3. Approximate viscous solution

It is convenient to consider the case of the circular cylinder first. We take its radius
a as its typical dimension so that the parameter λ introduced in §2.1 above becomes

λ¯ ν}(2a#ωη). (3.1)
The proposed solution is

ψ¯ψ
+
(σ

+
, s

+
)ψ

−
(σ

−
, s

−
), (3.2)

where

ψ
+
¯yiα

+
a&

¢

!

J
"
(K )

K
exp0yK $λ

s
+

a
³iK

σ
+

a 1dK, ³s
+
" 0, (3.3)

ψ
−
¯³iα

−
a&

¢

!

J
"
(K )

K
exp0yK $λ

s
−

a
yiK

σ
−

a 1dK, ³s
−
" 0, (3.4)

and α
+

and α
−

take the values given by (3.26) and (3.27) of Part 1: namely

α
+
¯ "

#
(V sin(µ)U cos(µ)i[V cos(µ)®U sin(µ)]), (3.5)

α
−
¯ "

#
(V sin(µ)®U cos(µ)i[V cos(µ)U sin(µ)]). (3.6)

We focus attention on the beam of waves in the first quadrant for which

ψ
+
¯®iα

+
a&

¢

!

J
"
(K )

K
exp0®K $λ

s
+

a
iK

σ
+

a 1dK, s
+
" 0. (3.7)

We note that at any point (σ
+
, s

+
) the limit as νU 0 of ψ

+
given by (3.7) is that given

by (3.31) of Part 1, the inviscid solution. The decay factor exp(®K $λs
+
}a) in the

integrand of (3.7) is the same as that used in Townsend (1966), Lighthill (1978) and
Makarov, Neklyudov & Chasheckin (1990).

We also note that ψ
+

and ψ
−

given by (3.3) and (3.4) satisfy (2.9) and (2.10)
respectively which were obtained from the exact equations (2.6) and (2.8) by applying
the boundary-layer approximation. In Appendices A and B we give derivations of
(3.3) and (3.4) from the exact equations and conclude that if λ' 1 they provide a good
approximation almost everywhere throughout the flow field. Their accuracy is also
investigated numerically in §4.4 below.

3.1. The smoothness of our solution

It is important to investigate the smoothness of the solution given by (3.3) on the two
rays s

+
¯ 0, rσ

+
r" a, for if it were not smooth on them there would be singularities in

its flow field.
As s

+
tends to ³0, ψ

+
given by (3.3) attains the limiting values given by (3.35)–(3.37)

of Part 1. Hence ψ
+

is continuous on s
+
¯ 0, rσ

+
r" a and so too will be all its

derivatives with respect to σ
+
. (We remark though that formal differentiation of the

integral representations of ψ
+

with respect to σ
+
, and then setting s

+
¯ 0 leads to
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divergent integrals). Also ψ
+

given by (3.3) satisfies (2.9) which may be integrated once
to give (noting that the various derivatives of ψ

+
tend to zero as σ

+
tends to plus or

minus infinity)
¥ψ

+

¥s
+

iλa#
¥$ψ

+

¥σ$
+

¯ 0, (3.8)

which shows that the first derivative of ψ
+

with respect to s
+

is continuous across
s
+
¯ 0, rσ

+
r" a. Higher derivatives with respect to s

+
, and cross-derivatives are then

handled similarly.
We conclude that ψ

+
given by (3.3) is infinitely differentiable with respect to both

variables everywhere in the plane except on the line segment s
+
¯ 0 within the circle.

A similar result holds for ψ
−
.

3.2. Further consideration of the boundary condition on the cylinder

We note that in the inviscid solution given by (3.42) of Part 1, ψ
+

is independent of s
+
.

We denote this value by ψi
+
. Now in our proposed solution given by (3.7), ψ

+
is a

continuous function of λs
+
}a up to the line s

+
¯ 0 on which it equals ψi

+
. Hence

rψ
+
®ψi

+
r can be made arbitrarily small provided λs

+
}a! δ for some δ. Now the

equation of the cylinder in the first quadrant is s
+
}a¯ (1®σ#

+
}a#)"/#. Hence, since

(1®σ#
+
}a#)"/# is bounded, the inequality λs

+
}a! δ can be satisfied if λ is sufficiently

small. We therefore conclude that on the surface of the cylinder ψ
+

differs from ψi
+

by
an amount that tends to zero with λ. A similar argument applies to ψ

+
on s

+
! 0 and

to ψ
−

on s
−
! 0 and s

−
" 0.

Hence our solution will satisfy the inviscid boundary condition (2.16) and hence, by
the remarks in §2.1, the viscous one to leading order in λ with arbitrarily small relative
error if λ is sufficiently small.

4. Numerical results

To save repeated writing of the long expressions in equations like (3.3) and (3.4) and
similar formulae for their derivatives, we define functions I

e
and I

o
as follows:

I
e
(n ;w, d )¯&

¢

!

KnJ
"
(K ) exp(®dK $) cos(wK ) dK, (4.1)

I
!
(n ;w, d )¯&

¢

!

KnJ
"
(K ) exp(®dK $) sin(wK ) dK, (4.2)

where
d¯λs

+
}a and w¯σ

+
}a. (4.3)

4.1. The �elocity profiles in the beams and beam width

Equations (3.7) and (4.1)–(4.3) show that for the beam of waves in the first quadrant

ψ
+
¯®iα

+
a[I

e
(®1;w, d )iI

o
(®1;w, d )]. (4.4)

The velocity components obtained by differentiation of this equation are

¥ψ
+

¥σ
+

¯α
+
[I

e
(0 ;w, d )iI

o
(0 ;w, d )], (4.5)

¥ψ
+

¥s
+

¯ iα
+
λ[I

e
(2 ;w, d )iI

o
(2 ;w, d )]. (4.6)

The resulting profiles of the waves will be expressed in two ways.
First, we give values of the real and imaginary parts of (1}α

+
) (¥ψ

+
}¥σ

+
), i.e. values

of I
e
(0 ;w, d ) and I

o
(0 ;w, d ) respectively. These are given in figure 2 for various values
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w

1

0
5

0
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–1
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–1

0

F 2. The I
e
and I

o
functions defining the velocity component ¥ψ

+
}¥σ

+
in the beams. (a) I

e
(0 ;

w, d ) and (b) I
o
(0 ;w, d ), integer d from 1 to 8. (c) I

e
(0 ;w, d ), d¯ 2−j and (d ) I

o
(0 ;w, d ), d¯ 2−jj from

0 to 8.

w50–5

1

0

F 3. Wave forms Re(¥ψ
+
}¥σ

+
) exp(®iωt)) at successive instants of time for a circular

cylinder executing horizontal oscillations. d¯ 2−(, ωt¯ "

)
kπ, k¯ 0, 1, 2,… , 7.
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cw
a
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0 1 2

d

F 4. The beam width: upper curve for the finite cylinder, lower curve the far-field similarity
solution (equation (4.8)).

of d, the smallest being 1}256. The values of the inviscid solutions are plotted in Part
1, figure 4, and we see that the viscous profiles approach the inviscid ones, albeit rather
slowly, as d tends to zero.

In the second method of presentation figure 3 gives, for the case V¯ 0, the velocity
profiles, Re((¥ψ

+
}¥σ

+
) exp(®iωt)) at successive instants of time. In particular, the

velocity profiles for d! 128 are bimodal, in that the envelope of the curves has two
maxima (Makarov et al. 1990).

Another quantity related to the velocity is the width of the beam. We define the
width of the beam to be 2c

w
where c

w
satisfies I

e
(0 ; c

w
}a, d )¯ 0. Approximate values

for the zero c
w
}a can be read from figure 2. More accurate values can be obtained by

numerically solving for the zero c
w
}a from (4.1). These values of c

w
}a are compared in

figure 4 with the asymptotics, at large d, given by (4.8) below.
For d small, the beam width falls below 1, its minimum being about 0±9. Decreasing

d further to really tiny values results in the beam width increasing, presumably tending
to 1 as dU 0.

4.2. Solution at large distances from the cylinder

For large values of d, the major contribution to the integrals in (3.3) comes from small
values of K so that we may replace J

"
(K ) therein by "

#
K. Thus, for example,

¥ψ
+

¥σ
+

C
α
+

2 &
¢

!

K exp(®K $diwK ) dK, dU¢, (4.7)

where d and w are defined in (4.3). We recognize (4.7) as the solution obtained by
Thomas & Stevenson (1972) : see also Lighthill (1978, equation (343)). More generally,
we have

2I
e
(n ;w, d )C&

¢

!

Kn+" exp(®dK $) cos(wK ) dK¯ d−(n+#)/$c
n
(wd−"/$),

2I
o
(n ;w, d )C&

¢

!

Kn+" exp(®dK $) sin(wK ) dK¯ d−(n+#)/$s
n
(wd−"/$).
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The notation c
n

and s
n

is that used in Thomas & Stevenson (1972). We remark that
functions c

n
and s

n
can be written in closed forms, in terms of generalized

hypergeometric functions (see Hurley & Keady 1996). The same functions occur in the
singular solution of Makarov et al. (1990).

Profiles given by (4.7) are given in Thomas & Stevenson (1972), figures 2 and 3. It
is clear that the results from our computations using (3.3) at larger d, as shown in our
figures 2 and 3 herein, are similar. Detailed checks are given in Hurley & Keady (1996).

It is also possible to derive asymptotics for the beam width c
w

for large values of d.
We find

c
w
}aC 2±15323d "/$, d( 1. (4.8)

Higher approximations are given in Hurley & Keady (1996).

4.3. The solution on the centreline of the beam

For w¯ 0, I
o
(n ; 0, d )¯ 0 and Mathematica 2.2 is able to evaluate the I

e
(n ; 0, d )

integrals of (4.1) explicitly in terms of generalized hypergeometric functions. Here is its
result for the integral – from just one obvious line of Mathematica – associated with
the centreline velocity :

I
e
(0 ; 0, d )¯ 1®

p
F
q 0²"#´, ²"$, "$, #$, #$´, ®1

11664d #
1


Γ(#

$
)
p
F
q0²&'´, ²#$, #$, 1, %

$
´,

®1

11664d#
1

6d #/$
®

Γ(%
$
)
p
F
q0²('´, ²1, %

$
, %
$
, &
$
´,

®1

11664d#
1

48d %/$
.

We have checked Mathematica’s numerical results against independent numerical
evaluations of the integral. The closed form facilitates evaluation of I

e
(0 ; 0, d ) at much

smaller values of d than was practical for general values of w. As regards asymptotic
analyses, Mathematica’s representation is still better for the case d large, and, at least
at version 2.2, it does not seem straightforward to extract asymptotics for d small.
Nevertheless, its numeric capabilities with these special functions is good into values
where d is small.

Values of I
e
(0 ; 0, d ), which, by (4.5) is 1}α

+
times the centreline velocity, are

compared in figure 5(a) with the asymptotic values given by (4.7) which are

I
e
(0 ; 0, d )C "

'
Γ(#

$
) d−#/$ d̄ 0±226d−#/$, d( 1. (4.9)

The figure shows that the similarity solution is a good approximation for d" 2.
We now discuss the results for small values of d, where we expect the inviscid theory

to hold. In this theory, each quantity is independent of s
+
. We therefore expect ψ

+
,

¥ψ
+
}¥σ

+
and ¥ψ

+
}¥s

+
to tend to appropriate values, independent of d, for d small.

For d¯ 0 and w¯ 0, equation (4.4) gives

ψ
+
¯®iα

+
aI

e
(®1; 0, 0)¯®iα

+
a,

the latter by consideration of the inviscid ψ
+
. Hence we expect

I
e
(®1; 0, d )U 1 as dU 0. (4.10)

The other limiting behaviours may similarly be shown to be

I
e
(0 ; 0, d )U 1 as dU 0, (4.11)

and
I
e
(2 ; 0, d )U 0 as dU 0. (4.12)
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Ie

1

0 1 4

d
2 3

(a)

Ie

1.1

0.03

d

(b)

1.0
0.020.01

F 5. I
e
(0 ; 0, d ) (a) for large d and its asymptotics ; (b) for small d.

Some indication of the limit (4.11) is evident at the left-hand end of figure 5(a).
However, the behaviour at small d is rather non-uniform. The overshoot to just beyond
1, before falling back, is evident in the figure. Figure 5(b) plots I

e
(0 ; 0, d ) at small values

of d. (Computations for other values of n, with particular attention to small values of
d, are reported in detail in Hurley & Keady 1996.) The computations accord with
the limits above and show that (4.10) and (4.11) are within 1% of being attained
if d! 10−$.

The results discussed earlier in this section suggest that it is convenient to split the
range 0! d!¢ into three sub-ranges as follows.

Region I is the range 0! d! 10−$. At d¯ 0 the profile is the inviscid one and, as d
is increased, viscous effects extend inwards from w¯³1 and reach the centreline after
about d¯ 10−$. The velocity profile across the beam is ‘bimodal ’, being just a
smoothed version of the inviscid one. (For definition of ‘bimodal ’ and ‘unimodal ’ see
Makarov et al. 1990.)

Region II is the range 10−$! d! 2. Viscous effects are important throughout the
beam and the velocity profile changes as d is increased, starting ‘bimodal ’ and
becoming ‘unimodal ’, and becoming very close to the similarity profile at about d¯
2.

Region III is the range d" 2 and the similarity solution applies everywhere there.
The velocity profile is ‘unimodal ’.
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I

O
s/a

II

III

1
λ

d =10–3

F 6. Schematic diagram of regions I, II and III of the (s
+
}a, 1}λ)-plane.

In figure 6 we have sketched regions I, II and III.
A different split involves s

+
.

In the region rs
+
r% a the ψ

+
and ψ

−
beams overlap.

In the region rs
+
r" 3a, for all practical purposes when λ is small, the ψ

−
solution can

be ignored within the region defined by the ψ
+

beam.

4.4. Validity of our boundary-layer approximation

As we pointed out in §3 expressions (3.3) and (3.4) for ψ
+

and ψ
−

satisfy (2.9) and
(2.10) respectively that were derived from the exact equations (2.6) and (2.8) by
introducing the ‘boundary-layer approximation’. For ψ

+
this approximation assumes

that its derivatives with respect to σ
+

are much larger than its derivatives with respect
to s

+
. We now investigate the validity of this assumption.

We will assume that it is satisfied in regions where

)¥ψ+

¥s
+

)' )¥ψ+

¥σ
+

) . (4.13)

Now, integration of (2.9) with respect to σ
+

gives

¥ψ
+

¥s
+


iν

2ωη 0
¥$ψ

+

¥σ$
+

1¯ f(s
+
), (4.14)

and f(s
+
) must vanish since both terms on the left-hand side of (4.14) tend to zero as

σ
+

tends to plus or minus infinity. Hence

¥ψ
+

¥s
+


iν

2ωη 0
¥$ψ

+

¥σ$
+

1¯ 0. (4.15)

Hence, in terms of w defined in (4.3), the condition (4.13) can be written

λ )¥$ψ+

¥w$
)' )¥ψ+

¥w ) . (4.16)

In discussing this condition, we consider the regions I, II and III of the (s
+
}a, 1}λ)-

plane that were defined before and are shown schematically in figure 6.
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In region III, the similarity solution holds, so that ψ
+

is given by

ψ
+
¯®i

α
+
a

2d "/$
&

¢

!

exp(®k$ikζ ) dk¯®i
α
+
a

2d "/$
e
!
(ζ ), (4.17)

where

ζ¯
σ
+
}a

(λs
+
}a)"/$

¯
w

d "/$
(4.18)

is the similarity parameter, and e
!
(ζ ) is a function of ζ.

Equation (4.7) etc. then gives

r¯
r¥ψ

+
}¥s

+
r

r¥ψ
+
}¥σ

+
r
¯

λ

d #/$
e
r
(ζ ),

where e
r
(ζ ) is a function of ζ. Hence, at fixed ζ, r is a monotonic decreasing function

of d in region III : its maximum is attained at the boundary and is λ2−#/$e
r
(ζ ). Hence,

as λ is small, the boundary-layer approximation is satisfied in region III.
We now consider regions I and II. In terms of I

e
(0 ;w, d ) and I

o
(0 ;w, d ), the

inequality (4.13) is satisfied provided

λrI
#
r¯λ )¥#I!¥w#

)' rI
!
r for I

n
¯ I

e
(n ;w, d )iI

o
(n ;w, d ). (4.19)

An extensive study of the ratio R¯ rI
#
}I

!
r is given in Hurley & Keady (1996). The

numerical calculations indicate that R(w, d )! 200 for d" 1}16 and all w ; R(w, d )!
200 for rw®1r" 1}16 and all d. In the region away from d small and w near 1, 200 is
much higher than needed, numbers less than eight being more appropriate. For given
d, s

+
}a¯ d}λ which in the (s

+
}a, 1}λ)-plane are straight lines through the origin. For

all points on a particular line, the values of I
n

will be the same. Hence the inequality
(4.16) will be satisfied for λ sufficiently small. It is clear from the plots of the profiles
of the inviscid solution that are given in Part 1 that the curvature of the profiles and
hence rI

#
r increases as d decreases, so that the required value of λ for inequality (4.16) to

be satisfied will decrease. However, it is also clear that, if we fix s
+
}a, 0! s

+
}a!¢,

for λ sufficiently small (depending on s
+
}a), inequality (4.16) will be satisfied.

However, the boundary-layer approximation is clearly not satisfied in the
neighbourhoods of the points where the characteristics touch the cylinder. We now
give some attention to this small region. Consider the point σ

+
}a¯®1, s

+
}a¯ 0. Put

σ!
+
¯σ

+
}a, s!

+
¯ s

+
}a. On the halfline s!

+
¯ 0,σ!

+
!®1,ψ

+
has the inviscid values given

in Part 1 so that ¥ψ
+
}¥σ

+
has an inverse square-root singularity at s!

+
¯ 0,σ!

+
¯®1.

Hence, if the boundary-layer approximation were valid, (2.9) would hold and ¥ψ
+
}¥s

+

would be more singular and hence of greater magnitude near the singular point. It
follows that the appropriate approximation to (2.6) is the one which retains the highest
derivatives, namely

~%ψ
+
¯ 0.

The solution of this equation which has the appropriate behaviour on s!
+
¯ 0,σ!

+
!®1

is
ψ

+
¯ 2"/#α

+
ar"/# sin("

#
θ),

where the notation is r¯ [(1σ!
+
)#(s!

+
)#]"/# and θ is a polar angle. The preceding

equation shows that ψ
+
, and hence ¥ψ

+
}¥σ!

+
, is even about the line θ¯π and that both
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are continuous on it. Also ¥ψ
+
}¥s!

+
is odd about the line θ¯ 0 and vanishes on it. It

is also clear from (2.6) applied with ψ replaced by ψ
+

that the region in which it reduces
to ~%ψ

+
¯ 0 is of diameter order λ"/#.

5. Comparison of results with those of other investigators

5.1. The force exerted by the cylinder on the fluid

Lighthill (1978, §4.10) considers a cylindrical wire oscillating horizontally and shows
that in our notation

q¯
G sin(µ)

4πN &
¢

!

k
!
exp(®k$

!
λs

+
ik

!
σ
+
) dk

!
, (5.1)

where G is the force per unit length which the cylinder exerts on the fluid and q is the
vertical component of the mass flux. Thus

q¯ ρ
!

¥ψ
+

¥σ
+

sin(µ), (5.2)

where ρ
!

is the density. Putting K¯k
!
a, equation (5.1) gives

¥ψ
+

¥σ
+

¯
G

4πρ
!
a#N&

¢

!

K exp0®K $λ
s
+

a
iK

σ
+

a 1dK. (5.3)

We recognize the integral in this equation as giving the similarity solution of Thomas
& Stevenson (1972).

We interpret Lighthill’s wire as being a circular cylinder of very small radius so that
we compare his result with our asymptotic one given in (4.7). Using (3.7) and (3.5) with
V¯ 0 gives

¥ψ
+

¥σ
+

¯
U

4
(cos(µ)®i sin(µ))&

¢

!

K exp0®K $λ
s
+

a
iK

σ
+

a 1dK, λ
s
+

a
( 1. (5.4)

Comparison of (5.3) and (5.4) gives

G¯πρ
!
a#NU [cos(µ)®i sin(µ)]. (5.5)

It is interesting to compare this result with that given by the inviscid theory of Part 1.
Equation (3.43) therein shows that the force per unit length that the cylinder exerts on
the fluid is

®F
x
¯πρ

!
ωa#ηU. (5.6)

This result is expected to hold approximately for the viscous case when λ' 1, for
then the discussion at the end of §4.4 suggests that the inviscid solution will be a good
approximation everywhere on the surface of the cylinder except very near where the
characteristics touch it. Equations (5.5) and (5.6) give

G

®F
x

¯ [1®i tan(µ)]. (5.7)

5.2. The work of Makaro� et al. (1990)

We focus on this reference because it includes a comprehensive review of the theoretical
and experimental work in Russia on a variety of problems involving internal waves. In
model 4 of their paper they calculate the internal waves produced by a vibrating
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circular cylinder in a viscous fluid. Their equation (4) for the vertical desplacement h
of the fluid particles is, in our notation,

h¯®"

#
exp(®iωt) a

!
sinµ sin(µ®φ

!
)&

¢

!

J
"
(K ) exp0iKσ

+

a
®K $λ

s
+

a 1dK, (5.8)

where a
!

is the amplitude of the particle displacement and φ
!

is its inclination to the
horizontal. The particle displacement hσ

+

in the direction of σ#
+

(defined in figure 5 of
Part 1) is h} sinµ and differentiation with respect to t gives that the particle velocity in
the direction of σ#

+
is

¥ψM
+

¥σ
+

¯®
i

2
exp(®iωt) a

!
w sin(µ®φ

!
)&

¢

!

J
"
(K ) exp0iKσ

+

a
®K $λ

s
+

a 1dK, (5.9)

where the superscript M denotes Makarov et al. (1990). (Also, in (5.9), t is measured
from t

!
¯®π}w to change the sign preceding its right-hand side.) Noting that

a
!
w sin(µ®φ

!
)¯U sinµ®V cosµ, (5.10)

(5.9) can be written

¥ψM
+

¥σ
+

¯®
i

2
exp(®iωt) (U sinµ®V cosµ)&

¢

!

J
"
(K ) exp0iKσ

+

a
®K $λ

s
+

a 1dK. (5.11)

The corresponding result in our solution with the time factor exp(®iωt) added is

¥ψ
+

¥σ
+

¯®
i

2
exp(®iωt) [U sinµ®V cosµi(U cosµV sinµ)]

¬&
¢

!

J
"
(K ) exp0iKσ

+

a
®K $λ

s
+

a 1dK. (5.12)

We now compare our results with the experimental ones shown in their figure 3(b). For
their experiments we find λ to be approximately 0±0019. Hence, using our figure 5, we
find that the particle displacement on the centreline of the beam is approximately
0±61 mm which is in reasonable agreement with their experimental results. However,
they state that their theoretical and experimental results differ by a factor of 6±5.

Finally, we consider results for the phase difference between the left- and right-hand
beams versus the angle of inclination, }

!
, of the plane of oscillation to the horizontal.

Their figure 2 shows excellent agreement between their theory and experiment. Our
equations (3.3)–(3.6) give

α
−
}α

+
¯ exp(i(π®2}

!
)), (5.13)

so that our results also agree with their experimental ones.
We can summarize the comparison of our results with those of Makarov et al. as

follows. It is clear from (5.11) and (5.12) that both ψM
+

and ψ
+

satisfy the same partial
differential equation, namely (2.9). Also, (4.1), (4.2) and (4.8) of Part 1 make it clear
that both ψ

+
ψ

−
and ψM

+
ψM

−
satisfy the same (inviscid) boundary condition, namely

(2.16). However, when the viscosity is taken to be zero ψ
+

reduces to the exact solution
discussed in Part 1 but ψM

+
does not and is therefore unsatisfactory.
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6. Application of results to a general elliptic cylinder

It is pointed out at the end of Appendix B that our approximate solution for general
ellipses is given by

ψ
+
¯yiα

+
c
+&

¢

!

J
"
(K )

K
exp0yK $λ

+

s
+

c
+

³iK
σ
+

c
+

1dK, ³s
+
" 0, (6.1)

ψ
−
¯³iα

−
c
−&

¢

!

J
"
(K )

K
exp0yK $λ

−

s
−

c
−

yiK
σ
−

c
−

1dK, ³s
−
" 0 (6.2)

on the understanding that the solution (6.1) for s
+
" 0 is continued up to the right-

hand boundary of the ellipse shown in figure 8(b) in Appendix B. Similarly the solution
for s

+
! 0 is continued up to the left-hand boundary of the ellipse.

In (6.1) and (6.2) c
+
, c

−
, α

+
and α

+
are given by (3.14), (3.26) and (3.27) of Part 1.

Also, λ
+

and λ
−

are defined by

λ
+
¯

ν

2c#
+
wη

, λ
−
¯

ν

2c#
−
wη

, (6.3)

see (3.1) herein.

Acknowledgements are gratefully given to the referees for helpful and constructive
comments and for drawing our attention to several important references.

Appendix A. Derivation of equation (3.7)

A.1. Fourier transforms in σ

We focus on the beam of waves in the first quadrant.
Define

σ!
+
¯σ

+
}c

+
and s!

+
¯ s

+
}c

+
, (A 1)

F
+
(ψ

+
)3

¥#ψ
+

¥σ!
+
¥s!

+

cot(2µ)
¥#ψ

+

¥s!#
+

iλ
+0¥%ψ+

¥σ!%
+

2
¥%ψ

+

¥σ!#
+

¥s!#
+


¥%ψ

+

¥s!%
+

1 , (A 2)

where λ
+

is defined in (6.3), and

F
+,$

(ψ
+
)3

¥#ψ
+

¥σ
+
¥s

+

iλ
+0¥%ψ+

¥σ%
+

1 . (A 3)

In terms of these, (2.6) and (2.9) become respectively

F
+
(ψ

+
)¯ 0, (A 4)

F
+,$

(ψ
+
)¯ 0, (A 5)

both to be satisfied in the flow region. We always solve F
+
(ψ)¯ 0 with boundary

conditions that ψ and ¡ψ tend to zero at infinity. To save unnecessary writing,
henceforth in this Appendix we drop the superscript prime (or equivalently take c

+
¯

1).
Assume that the singularities of ψ are fairly mild so that we can define

Ψ
+
(K )¯

1

o2π&
¢

−¢

ψ
+
exp(®iKσ

+
) dσ

+
(A 6)
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f

ξ

F 7. Roots of the quartic for µ¯π}4 (and K" 0). The line shown is f¯®ξK}λ
+
: the quartic is

f¯ (ξ#®K#)#. Their points of intersection, the real roots, are denoted ξ
j
, ®K! ξ

#
! 0, ξ

$
!®K.

as the Fourier transform of ψ
+
, with inversion formula

ψ
+
¯

1

o2π&
¢

−¢

Ψ
+
exp(iKσ

+
) dK. (A 7)

Taking a Fourier transform of F
+
(ψ

+
)¯ 0, see (A 2), gives

d%Ψ
+

ds%
+

®
d#Ψ

+

ds#
+

02K #
i cot(2µ)

λ
+

1K

λ
+

dΨ
+

ds
+

K %Ψ
+
¯ 0. (A 8)

The equation
Ψ

+
¯Ψ

!,+
(K ) exp(ζs

+
) (A 9)

is a solution of (A 8) if

ζ %®ζ # 02K #i
cot(2µ)

λ
+

1ζ
K

λ
+

K %¯ 0. (A 10)

Employing the method of the Principle of the Argument we find that the quartic
polynomial (A 10) has (for µ1π}4) one zero in each of the four quadrants of the
(ζ¯ ξiη)-plane. We denote by ζ

i
the zero in the ith quadrant.

When K" 0, the most general solution of (A 8) that decays for large positive s
+

is

Ψ
+
¯ c

#
(K ;λ

+
) exp(ζ

#
s
+
)c

$
(K ;λ

+
) exp(ζ

$
s
+
). (A 11)

A.2. Roots of the quartic, µ¯π}4

We temporarily consider µ¯π}4. Then (A 10) has one zero in each of the first and
fourth quadrants and two on the negative ξ-axis and can be written

(ζ #®K #)#ζK}λ
+
¯ 0, (A 12)

so that the two zeros on the negative ξ-axis satisfy

(ξ#®K #)#ξK}λ
+
¯ 0. (A 13)

The location of the two real roots of (A 13), denoted by ξ
#

and ξ
$
, are illustrated in

figure 7.
We now examine ξ

$
. Refer again to figure 7. We see that when (K}λ

+
)( 1,

f¯®Kξ}λ
+

is nearly vertical, so that one root ξ
$

is large and negative,

ξ
$
C®(K}λ

+
)"/$, K}λ

+
U¢,
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and the other real root ξ
#
is very nearly zero. This small root of (A 13) is approximated,

at fixed K" 0, by

ξ
#
¯®λ

+
K $(1®2(λ

+
K #)#9(λ

+
K #)%…) for λ

+
U 0. (A 14)

Also, ξ
#

can be approximated, at fixed λ
+
" 0, by

ξ
#
C®K

1

2λ"/#
+

®
1

64K #λ$/#
+

for KU¢.

On s
+
¯ 0, equation (A 11) gives Ψ

+
¯ c

#
(K )c

$
(K ) so that

ψ
+
¯

1

o2π&
¢

−¢

(c
#
(K )c

$
(K )) exp(iKσ

+
) dK, s

+
¯ 0. (A 15)

On taking

(c
#
(K )c

$
(K ))¯®io2πα

+
c
+

J
"
(K )

K
H(K ), (A 16)

where H(K ) denotes the Heaviside step function, which is 1 for K" 0 and 0 for
K! 0, equation (A 11) and the inversion formula give ψ

+
that agree with the inviscid

solution as s
+

tends to zero from above.
Now when λ

+
is small and s

+
" 0, the c

$
(K )-term is negligible compared to the c

#
(K )-

term. This is established by the results of the preceding subsection concerning the roots
of the quartic. From this, we obtain that, for s

+
" 0, we obtain correct asymptotics by

replacing c
#
(K ) by zero. Also, using the asymptotics of ξ

#
for λ

+
small, we see that we

obtain correct asymptotics by replacing ξ
#
by ®λ

+
K $. This gives a derivation of (3.7).

A.3. Return to the deri�ation of (3.7)

We now return to the general case when µ1π}4. Putting cot(2µ)¯ ε, we find that the
root equation (A 10) that reduces to ®λ

+
K $ as εU 0 has a positive imaginary part and

is in the second quadrant. Thus, again for λ
+

small, our proposed solution is

ψ
+
¯®iα

+
c
+&

¢

!

J
"
(K )

K
exp(ζ

#
s!
+
iKσ!

+
) dK, s!

+
& 0, (A 17)

where ζ
#
is the root of equation (A 10) that lies in the second quadrant of the complex

ζ-plane. When λ
+

is small, the quartic (A 10) is now approximated by

K %ζK}λ
+
¯ 0, (A 18)

so that
ζ¯®λ

+
K $, (A 19)

and (A 17) becomes (3.7).
However, (A 17) has one major defect, because it may readily be shown that it gives

values of ¥ψ
+
}¥s

+
which are not continuous on s

+
¯ 0, rσ

+
r" 1. However, (3.7) does

not have this defect, as was shown in §3.1 of the main text.
We note that ψ

+
given by (3.7) satisfies (A 5) exactly but (A 4) only approximately.

Appendix B. Representation of the solution by distributions of semi-
vortices

We are concerned with developing a representation of our solution by a distribution
of singular solutions in the case λ' 1 when the viscous solution tends to the inviscid
one close to the cylinder. The first step is to find such a representation for the inviscid
solution given by (3.35)–(3.37) of Part 1.
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B.1. The in�iscid case

Makarov et al. (1990) expressed their solution in terms of a distribution of dipoles. We
prefer to use vortices.

The solution for a point vortex in a stratified fluid was given by Robinson (1969) for
the case when the fluid was confined above and below by two horizontal plane walls.
The solution was adapted by Hurley (1969) to the case of an unbounded fluid. Thus
in accordance with his equation (3.18) we take as the singular solution

ψ
V

¯ (1}π) log(σ
+
σ
−
)

¯ i[2®H(σ
+
)®H(σ

−
)](1}π) log rσ

+
σ
−
r, x" 0, (B 1)

and ψ
V

is defined to be an even function of x.
We express

ψ
V

¯ψ
V+

ψ
V−

,

where ψ
V+

(σ
+
)¯ (1}π) logσ

+

and ψ
V−

(σ
−
)¯ (1}π) logσ

−
;

5

6

7

8

(B 2)

ψ
V+

and ψ
V−

will be referred to as ‘semi-vortices ’ because their sum is a vortex. The
Green’s function for the antisymmetric motion of a flat plate was shown in Hurley
(1969) to be, in our notation, proportional to

g(s«)¯
s«

(1®s«#)"/#
, (B 3)

where s«¯ s}a and s is the distance of a point on the plate from its centre, the length
of the plate being 2a. Define σ!

+
¯σ

+
}a, σ!

−
¯σ

−
}a, τ!

+
¯ τ

+
}a, τ!

−
¯ τ

−
}a. We now

show that the solutions for a circular cylinder can be expressed as

ψ
+
¯

α
+
a

π &
Γ
+

τ!
+
log(τ!

+
®σ!

+
)

(1®τ!#
+
)"/#

dτ!
+
,

ψ
−
¯

α
−
a

π &
Γ
−

τ!
−
log(τ!

−
®σ!

−
)

(1®τ!#
−
)"/#

dτ!
−
,

5

6

7

8

(B 4)

where Γ
+

and Γ
−

are the interval (®1, 1) of the Oτ!
+

and Oτ!
−

axes shown in figure 8(a).
Γ

+
is indented below τ

+
¯σ

+
for s

+
" 0 and above it for s

+
! 0.

Differentiation of the first of (B 4) gives

¥ψ
+

¥σ
+

¯³
iα

+
σ!
+

(1®σ!#
+
)"/#


α
+

π
0&"

−"

τ!
+
dτ!

+

(1®τ!#
+
)"/# (τ!

+
®σ!

+
)
, rσ!

+
r! 1,

¯
α
+

π &
"

−"

τ!
+
dτ!

+

(1®τ!#
+
)"/# (τ!

+
®σ!

+
)
, rσ

+
r" 1,

where 0 denotes the Cauchy principal value, and where in the first equation the upper
sign is for s

+
" 0 and the lower sign for s

+
! 0.

Using the results

0&"

−"

τ!
+
dτ!

+

(1®τ!#
+
)"/# (τ!

+
®σ!

+
)
¯π,
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τ′
–

τ′+

σ ′+=
1

σ ′+=
–1σ ′– =1

σ ′– = –1
O

(a)

τ+

σ +
= –c +

O

(b)

A B

σ +
= c +

F 8. Location of semi-vortices for (a) circular cylinders, (b) elliptic cylinders.

and &"

−"

τ!
+
dτ!

+

(1®τ!#
+
)"/# (τ!

+
®σ!

+
)
¯ 1

1

2

3

4

®σ!
+

(σ!#
+
®1)"/#

for σ!
+
" 1

σ!
+

(σ!#
+
®1)"/#

for σ!
+
!®1,

we find that ¥ψ
+
}¥σ

+
takes the values given by (3.30) of Part 1 as desired.

B.2. The �iscous case

Equations (B 2) and (B 4) show that the inviscid solution for ψ
+

can be expressed as

ψ
+
¯α

+
a&

Γ
+

τ!
+
ψ

V+
(τ!

+
®σ!

+
) dτ!

+

(1®τ!#
+
)"/#

, (B 5)

where ψ
V+

(σ
+
) is given by (B 2).
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Now it can be shown that ψ
V+

is the solution, having appropriate behaviour at large
distances, of the equation

η#
¥#ψ

V+

¥x«#
®

¥#ψ
V+

¥y«#
¯®2iδ(x«) δ(y«). (B 6)

Thus referring to equation (2.2) of the main text and (B 5) and (B 6) above we take as
the viscous solution

ψv
+
¯α

+
a&

Γ
+

τ!
+
ψv

V+
(τ!

+
®σ!

+
) dτ!

+

(1®τ!#
+
)"/#

, (B 7)

where ψv
V+

satisfies

η#
¥#ψv

V+

¥x«#
®

¥#ψv
V+

¥y«#
iλ~%ψv

V+
¯®2iδ(x«) δ(y«). (B 8)

The solution of (B 8) clearly tends to that of (B 6) as λ tends to zero. Using (2.6) we
see that referred to the (σ!

+
, s!

+
) axes (B 8) is

¥#ψv
V+

¥σ!
+
¥s!

+

cot(2µ)
¥#ψv

V+

¥s!#
+

iλ~%ψv
V+

¯®2iδ(σ!
+
) δ(s!

+
). (B 9)

Let

ψa v
V+

¯
1

2π&
¢

−¢
&

¢

−¢

ψv
V+

exp(®iKσ!
+
®iks!

+
) dσ!

+
ds!

+
,

so that by (B 9)

ψa v
V+

¯
®i

π(®kK®k# cot(2µ)iλ(K %2K #k#k%)
.

This gives

ψv
V+

¯
®i

2π#
&

¢

−¢
&

¢

!

exp(iKσ!
+
iks!

+
) dKdk

®kK®k# cot(2µ)iλ(K #k#)#
, (B 10)

where only those waves having positive values of K are included so that the radiation
condition is satisfied.

We carry out the integration with respect to k first. Let D(k)¯®kK®k#

cot(2µ)iλ(K #k#)#, so that

D(®iζ )¯ iλ[ζ %ζ #(2K #i cot(2µ)}λ)Kζ}λK %]. (B 11)

We note that the above polynomial in ζ is the same as the left-hand side of (A 10). This
polynomial has roots at ζ

i
, i¯ 1, 2, 3, 4. The corresponding zeros of D(k) are k

i
¯®iζ

i
.

We find that k
#
and k

$
are in the upper half-plane and k

"
and k

%
are in the lower half-

plane. It was shown in Appendix A that in the limit λU 0 the contribution from ζ
#
was

dominant. Hence

ψv
V+

C
®1

π &
¢

!

exp(iKσ!
+
ζ

#
s!
+
)

K
dK, s

+
" 0,λU 0

C
®1

π &
¢

!

exp(iKσ!
+
®λK $s!

+
)

K
dK, (B 12)

using (A 14). Substitution into (B 7) gives

ψv
+
¯

®α
+
a

π &
¢

!

exp(®iKσ!
+
®λK $s!

+
)

K
I(K ) dK, s

+
" 0, (B 13)
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where

I(K )¯&"

−"

τ!
+

(1®τ!#
+
)"/#

exp(iKτ!
+
) dτ!

+
.

Noting that

&"

−"

τ!
+
exp(iKσ!

+
) dτ!

+

(1®τ!#
+
)"/#

¯ iπJ
"
(K ),

equation (B 13) gives

ψv
+
¯®iα

+
a&

¢

!

J
"
(K )

K
exp(iKσ!

+
®λK $s!

+
) dK,

in agreement with (3.3) of the main text.
We now consider the problem for the general ellipse shown in figure 8(b), where AB

is the straight line joining the points where the ellipse touches the characteristics
σ
+
¯³c

+
.

It is clear from the discussion in §3.2 that the viscous solution given by (B 7) (with
α
+

having the appropriate value given by (3.26) of Part 1) will approximate the inviscid
solution on the portion of the ellipse to the right of the line AB with arbitrarily small
relative error with λ sufficiently small provided that the Oτ

+
-axis is taken to be to the

left of AB. The solution to the left of AB may similarly be constructed if the Oτ
+
-axis

is taken to be to the right of AB. Hence we can replace (3.3) by

ψ
+
¯yiα

+
c
+&

¢

!

J
"
(K )

K
exp(yK $λ

+
s
+
}c

+
³iKσ!

+
}c

+
) dK, ³s

+
" 0 (B 13)

on the understanding that the solution for s
+
" 0 is continued up to the right-hand

boundary of the ellipse shown in figure 8(b). Similarly for s
+
! 0.

In (B 13) c
+

and α
+

are given by (3.14) and (3.26) of Part 1 and

λ
+
¯

ν

2χ#
+
ωη

, (B 14)

see (3.1) herein.
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